Spectroscopy Courses
Infrared & Raman Courses Produced by Coblentz Society Members or Organizations Associated with the Society
Week-Long On-Site Course: Infrared & Raman Courses, Inc.
Interpretation of Infrared and Raman Spectra
The next course will be in 2024.
Each course consists of 17 hours of lectures and 9 hours of exercises. The course is designed to present a strategy to determine chemical structure from both infrared and Raman spectra. The strategy has been developed over more than sixty years and has been presented to several thousand chemists, biochemists, forensic scientists, and engineers.
The exercise sessions are tied closely to the lectures and are used to reinforce the strategy. The lecture staff is available to assist participants during the exercise sessions. Participants work in small groups to solve the problems in a “learn by doing” environment.
The goal is to teach correct band assignments and how to use multiple spectral bands and features to determine correct chemical structures. The objective is not to try to memorize lists of band positions, but rather to see patterns in the spectra and work in a logical fashion to elucidate functional groups and judge the certainty of the assignments.
Affiliation with the Coblentz Society
The Coblentz Society was founded in 1954 and has as its purpose “to foster the understanding and application of vibrational spectroscopy”. For many years the Coblentz Society offered training courses for those new to vibrational spectroscopy.
In 2006 the Coblentz Society formalized a long-standing relationship with Infrared & Raman Courses. Infrared & Raman Courses, Inc., a not-for-profit corporation, is now affiliated with the Society. This relationship stems from the founding purpose of the Society and the purpose of Infrared & Raman Courses, namely to “provide continuing education resources for vibrational spectroscopy.” The Coblentz Society sponsors the Lord lecture held at the annual U.S. course.
The Coblentz Society offers scholarships to graduate students and young scientists to defray the tuition cost of the courses. Learn more.
Other courses can be custom configured for user groups, such as on-site corporate or government agency courses. Please contact James de Haseth at dehaseth@ircourses.org for further information.
Spectroscopy Courses Offered at Conferences

The courses below are offered at:
List of Coblentz Produced Courses
Course Title | Length | Instructor(s) |
Introduction to Infrared, Raman and Near Infrared Spectroscopy | 1/2 day | James de Haseth |
Searching Infrared and Raman Spectra | 1/2 day | James de Haseth |
Problems with FT-IR Spectra and How to Avoid Them | 1 day | Ellen Miseo /Jenni Briggs/ Jeff D’agostino |
Modern Raman Microscopy for Applications in the Material and Life Sciences | 1 day | Alexander Rzhevskii |
Process Analytical Technology: Out of the Lab and Into the Line | 1 day | James Rydzak |
Introduction to Quantitative Spectroscopy for Near Infrared and Raman Instrumentation | 1 day | Debbie Peru |
The Role, Function, and Proper Use of the Microscope in Microspectroscopy | 1/2 day | Dale Purcell |
Spectral Interpretation of Vibrational Spectra | 2 days | Peter Larkin / Mary Carrabba |
ABC to PMP: A Project Management Crash Course | 1/2 day | Luisa Profeta |
Laser Fundamentals for Spectroscopy | 1/2 day | Rob Chimenti |
Technologies and Applications for Miniature Optical Spectrometers and Spectroscopic Sensors | 1/2 day | Richard Crocombe |
How to Make Connections: Networking at Conferences and in Higher Education | 1/2 day | Alexis Weber |
Bioanalytical Methods for Biopharma: Fluorescence | 1 day | Linda Kidder /Alan Ryder |
Practical Raman Spectroscopy | 1 day | Tim Prusnick/Sarah Shidler |
Multivariate Analysis for Beginners: Pre-processing and Data Analysis of Raman/IR spectra in the MATLAB Environment | 1/2 day | Cassio Lima |
Infrared and Raman Spectral Interpretation – Infrared and Raman are essential techniques to elucidate chemical structure. They enjoy widespread usage because innovations in instrumentation and data analysis tools along with improved affordability have dramatically increased the user base. This is often at the expense of a foundational understanding of IR and Raman spectroscopy. This two-day course provides an introduction to the art and science of interpreting IR and Raman spectra. The course content focuses on developing a fundamental understanding of group frequencies, a general strategy to analyze the spectra as well as applying the lesson learned to determine molecular structure using both IR and Raman spectra.
Practical Vibrational Spectroscopy – This course will provide an introduction to Raman, mid-infrared and near-infrared concentrating on why an absorption occurs, where an absorption occurs and the benefits and limitations of the techniques.
Spectral Searching – This course will provide an introduction to spectral searching. Among other topics it will cover how to do an efficient search, why the first “hit” may not be the right answer and how do you deal with a mixture or when the unknown is not in the database.
Problems with FT-IR Spectra and how to Avoid Them – Users of FT-IR spectrometers may have received little or no formal training in spectroscopy and therefore cannot distinguish between “good” and “bad” spectra. In this course, we will show many of the problems that are commonly encountered with FT-IR spectra measured by inexperienced (and often experienced!) users and show how to avoid them.
Introduction to Raman Spectroscopy and Imaging – You will learn the basics of applied Raman spectroscopy and imaging. Students will be taught the application of group theory to crystalline materials and how to apply those symmetry rules to perform “Raman Crystallography”. The instructor will teach Raman spectroscopy and imaging at a practical level and cover topics to allow the student to immediately apply the material in the workplace.
Process Analytical Technology: Out of the lab and into the Line – Process analytical technology (PAT) is a tool for product development, scale up and manufacturing of any chemical product. In this course, you will learn about the benefits of in-process monitoring, how to justify and plan the analysis implementation. We will discuss different PAT tools, how to choose them for your application and implementation. We will also discuss the benefits such as saving time and money, improving green scores and manufacturing proficiency. Applications from various industries will be used to explain concepts and provide examples of implementation.
Modern Portable Analytical Spectroscopy Portable spectrometers are used for many purposes, including quality control and process analyses in industrial environments, and for scene-assessment in law enforcement, emergency response and military applications. This hands-on course will cover the capabilities of modern portable spectrometers covering elemental spectroscopy (x-ray fluorescence and laser induced breakdown spectroscopy), molecular/optical (infrared and Raman), and mass spec/molecular (ion mobility and gas chromatography-mass spectroscopy). Advantages, limitations and applications of each method will be detailed. Attendees will be exposed to sampling and use of these systems during the hands-on exercises.
An Introduction to Quantitative Spectroscopic Analysis – This course is designed to provide practical information for the development of quantitative methods in spectroscopy. This introductory course is ideally suited for Scientists and Managers who want to expand their knowledge of developing and implementing spectroscopic methods for quantitative analysis of key ingredients or components in products. The course provides an overview of basic statistics, method development considerations, and common quantitative techniques, Additionally, the course provides practical considerations in designing methods, defining the problem, and validation requirements to ensure compliance with USP guidelines. Several applications and group discussions are included to illustrate key principals. Gas phase analysis will not be discussed.
Preprocessing, How to Do and Not to Do – The first things one learns when applying NIR spectroscopy and chemometrics to analytical problems is that you need to “preprocess the data”. If spectra were perfect and spectrometers produced identical spectra of identical samples and all reference data represented the analyte’s concentration in the spectra, then preprocessing would not be needed. Baseline offsets, particle size, heterogeneity and the vagaries of analytical procedures on different samples means it’s necessary to remove any interferences that do not belong to the analyte’s spectrum. The course will look at the various preprocessing techniques and what they mean to the spectra and the models.